Sunday 23 July 2017

Autoregressive Moving Average Explicado


Objetivo: Verificar os lotes de autocorrelação de aleatoriedade (Box e Jenkins, pp. 28-32) são uma ferramenta comumente usada para verificar aleatoriedade em um conjunto de dados. Essa aleatoriedade é verificada pela computação de autocorrelações para valores de dados em diferentes intervalos de tempo. Se aleatório, tais autocorrelações devem estar próximas de zero para separações de tempo e intervalo. Se não aleatório, uma ou mais das autocorrelações serão significativamente diferentes de zero. Além disso, os gráficos de autocorrelação são usados ​​na fase de identificação do modelo para os modelos de séries temporais médias autorregressivas Box-Jenkins. Autocorrelação é apenas uma medida da aleatoriedade Observe que não corretamente não significa aleatoriamente. Os dados que possuem autocorrelação significativa não são aleatórios. No entanto, dados que não mostram autocorrelação significativa ainda podem exibir aleatoriedade de outras maneiras. A autocorrelação é apenas uma medida de aleatoriedade. No contexto da validação do modelo (que é o tipo primário de aleatoriedade que discutimos no Manual), verificar a autocorrelação é geralmente um teste suficiente de aleatoriedade, uma vez que os resíduos de modelos de montagem pobres tendem a exibir aleatoriedade não sutil. No entanto, algumas aplicações exigem uma determinação mais rigorosa da aleatoriedade. Nesses casos, uma série de testes, que podem incluir a verificação da autocorrelação, são aplicados, uma vez que os dados podem ser não-aleatórios de muitas formas diferentes e muitas vezes sutis. Um exemplo de onde uma verificação mais rigorosa da aleatoriedade é necessária seria testar geradores de números aleatórios. Lote de amostra: as correções automáticas devem ser próximas de zero para aleatoriedade. Tal não é o caso neste exemplo e, portanto, a suposição de aleatoriedade falha. Esse gráfico de autocorrelação de amostra mostra que a série de tempo não é aleatória, mas sim um alto grau de autocorrelação entre observações adjacentes e adjacentes. Definição: r (h) versus h Os gráficos de autocorrelação são formados por eixo vertical: coeficiente de autocorrelação onde C h é a função de autocovariância e C 0 é a função de variância Observe que R h está entre -1 e 1. Observe que algumas fontes podem usar o Seguinte fórmula para a função de autocovariância Embora esta definição tenha menor preconceito, a formulação (1 N) possui algumas propriedades estatísticas desejáveis ​​e é a forma mais utilizada na literatura estatística. Veja as páginas 20 e 49-50 em Chatfield para obter detalhes. Eixo horizontal: intervalo de tempo h (h 1, 2, 3.) A linha acima também contém várias linhas de referência horizontais. A linha do meio está em zero. As outras quatro linhas são 95 e 99 bandas de confiança. Observe que existem duas fórmulas distintas para gerar as bandas de confiança. Se o gráfico de autocorrelação estiver sendo usado para testar aleatoriedade (ou seja, não há dependência de tempo nos dados), recomenda-se a seguinte fórmula: onde N é o tamanho da amostra, z é a função de distribuição cumulativa da distribuição normal padrão e (alfa ) É o nível de significância. Nesse caso, as bandas de confiança possuem uma largura fixa que depende do tamanho da amostra. Esta é a fórmula que foi usada para gerar as bandas de confiança no gráfico acima. Os gráficos de autocorrelação também são usados ​​no estágio de identificação do modelo para montagem de modelos ARIMA. Neste caso, um modelo de média móvel é assumido para os dados e as seguintes faixas de confiança devem ser geradas: onde k é o atraso, N é o tamanho da amostra, z é a função de distribuição cumulativa da distribuição normal padrão e (alfa) é O nível de significância. Nesse caso, as bandas de confiança aumentam à medida que o atraso aumenta. O gráfico de autocorrelação pode fornecer respostas para as seguintes questões: Os dados são aleatórios É uma observação relacionada a uma observação adjacente É uma observação relacionada a uma observação duas vezes removida (etc.) É a série de tempo observada ruído branco É a série temporal observada sinusoidal A série temporal observada é autorregressiva. O que é um modelo apropriado para as séries temporais observadas. O modelo é válido e suficiente. A ssqrt da fórmula é válida. Importância: Garantir a validade das conclusões de engenharia. A aleatoriedade (juntamente com modelo fixo, variação fixa e distribuição fixa) é Um dos quatro pressupostos que geralmente dependem de todos os processos de medição. O pressuposto de aleatoriedade é extremamente importante para os seguintes três motivos: a maioria dos testes estatísticos padrão depende da aleatoriedade. A validade das conclusões do teste está diretamente ligada à validade do pressuposto de aleatoriedade. Muitas fórmulas estatísticas comumente usadas dependem da suposição de aleatoriedade, sendo a fórmula mais comum a fórmula para determinar o desvio padrão da amostra: onde s é o desvio padrão dos dados. Embora fortemente utilizados, os resultados da utilização desta fórmula não têm valor a menos que a suposição de aleatoriedade se mantenha. Para dados univariados, o modelo padrão é Se os dados não são aleatórios, este modelo é incorreto e inválido, e as estimativas para os parâmetros (como a constante) tornam-se absurdas e inválidas. Em suma, se o analista não verificar a aleatoriedade, a validade de muitas das conclusões estatísticas torna-se suspeita. A trama de autocorrelação é uma excelente maneira de verificar essa aleatoriedade. A RIMA significa modelos de Modulação Integrada Autoregressiva Integrada. Univariado (vetor único) ARIMA é uma técnica de previsão que projeta os valores futuros de uma série inteiramente baseada em sua própria inércia. Sua principal aplicação é a previsão de curto prazo que requer pelo menos 40 pontos de dados históricos. Ele funciona melhor quando seus dados exibem um padrão estável ou consistente ao longo do tempo com uma quantidade mínima de outliers. Às vezes, chamado Box-Jenkins (após os autores originais), o ARIMA geralmente é superior às técnicas de suavização exponencial quando os dados são razoavelmente longos e a correlação entre observações passadas é estável. Se o dado for curto ou altamente volátil, algum método de suavização poderá ser melhor. Se você não tem pelo menos 38 pontos de dados, você deve considerar algum outro método que o ARIMA. O primeiro passo na aplicação da metodologia ARIMA é verificar a estacionaria. A estacionarização implica que a série permanece em um nível bastante constante ao longo do tempo. Se houver uma tendência, como na maioria das aplicações econômicas ou comerciais, seus dados NÃO são estacionários. Os dados também devem mostrar uma variância constante em suas flutuações ao longo do tempo. Isso é facilmente visto com uma série que é fortemente sazonal e cresce a um ritmo mais rápido. Nesse caso, os altos e baixos da sazonalidade se tornarão mais dramáticos ao longo do tempo. Sem essas condições de estacionaridade que estão sendo atendidas, muitos dos cálculos associados ao processo não podem ser computados. Se um gráfico gráfico dos dados indicar não-estacionária, então você deve diferenciar a série. A diferenciação é uma excelente maneira de transformar uma série não estacionária em uma estacionária. Isso é feito subtraindo a observação no período atual do anterior. Se essa transformação for feita apenas uma vez para uma série, você diz que os dados foram primeiro diferenciados. Este processo elimina essencialmente a tendência se sua série estiver crescendo a uma taxa bastante constante. Se estiver crescendo a uma taxa crescente, você pode aplicar o mesmo procedimento e diferenciar os dados novamente. Seus dados seriam então diferenciados em segundo lugar. As autocorrelações são valores numéricos que indicam como uma série de dados está relacionada a si mesma ao longo do tempo. Mais precisamente, ele mede quão fortemente os valores de dados em um número especificado de períodos separados estão correlacionados um com o outro ao longo do tempo. O número de períodos separados geralmente é chamado de atraso. Por exemplo, uma autocorrelação no intervalo 1 mede como os valores de 1 período separado estão correlacionados entre si ao longo da série. Uma autocorrelação no intervalo 2 mede como os dados separados por dois períodos estão correlacionados ao longo da série. As autocorrelações podem variar de 1 a -1. Um valor próximo a 1 indica uma alta correlação positiva, enquanto um valor próximo a -1 implica uma alta correlação negativa. Essas medidas são mais frequentemente avaliadas através de gráficos gráficos chamados correlagramas. Um correlagram traça os valores de auto-correlação para uma determinada série em diferentes atrasos. Isso é referido como a função de autocorrelação e é muito importante no método ARIMA. A metodologia ARIMA tenta descrever os movimentos em uma série de tempo estacionária como uma função do que são chamados parâmetros de média autorregressiva e móvel. Estes são referidos como parâmetros AR (autoregessivos) e MA (médias móveis). Um modelo AR com apenas 1 parâmetro pode ser escrito como. X (t) A (1) X (t-1) E (t) onde X (t) séries temporais sob investigação A (1) o parâmetro autorregressivo da ordem 1 X (t-1) a série temporal atrasou 1 período E (T) o termo de erro do modelo Isso significa simplesmente que qualquer valor X (t) determinado pode ser explicado por alguma função do seu valor anterior, X (t-1), além de algum erro aleatório inexplicável, E (t). Se o valor estimado de A (1) fosse de .30, então o valor atual da série estaria relacionado a 30 de seu valor 1 há algum tempo. Claro, a série pode estar relacionada com mais do que apenas um valor passado. Por exemplo, X (t) A (1) X (t-1) A (2) X (t-2) E (t) Isso indica que o valor atual da série é uma combinação dos dois valores imediatamente precedentes, X (t-1) e X (t-2), além de algum erro aleatório E (t). Nosso modelo agora é um modelo autoregressivo de ordem 2. Modelos médios em movimento: um segundo tipo de modelo Box-Jenkins é chamado de modelo de média móvel. Embora esses modelos pareçam muito parecidos com o modelo AR, o conceito por trás deles é bastante diferente. Os parâmetros médios em movimento relacionam o que ocorre no período t apenas com os erros aleatórios ocorridos em períodos passados, ou seja, E (t-1), E (t-2), etc., em vez de X (t-1), X ( T-2), (Xt-3) como nas abordagens autorregressivas. Um modelo de média móvel com um termo de MA pode ser escrito da seguinte forma. X (t) - B (1) E (t-1) E (t) O termo B (1) é chamado de MA da ordem 1. O sinal negativo na frente do parâmetro é usado apenas para convenção e geralmente é impresso Automaticamente pela maioria dos programas de computador. O modelo acima simplesmente diz que qualquer valor dado de X (t) está diretamente relacionado apenas ao erro aleatório no período anterior, E (t-1) e ao termo de erro atual, E (t). Como no caso de modelos autoregressivos, os modelos de média móvel podem ser estendidos para estruturas de ordem superior que cobrem diferentes combinações e comprimentos médios móveis. A metodologia ARIMA também permite a criação de modelos que incorporam parâmetros de média autorregressiva e móvel em conjunto. Estes modelos são frequentemente referidos como modelos mistos. Embora isso faça para uma ferramenta de previsão mais complicada, a estrutura pode simular a série melhor e produzir uma previsão mais precisa. Modelos puros implicam que a estrutura consiste apenas em parâmetros AR ou MA - nem ambos. Os modelos desenvolvidos por esta abordagem geralmente são chamados de modelos ARIMA porque eles usam uma combinação de autoregressivo (AR), integração (I) - referente ao processo reverso de diferenciação para produzir as operações de previsão e média móvel (MA). Um modelo ARIMA geralmente é declarado como ARIMA (p, d, q). Isso representa a ordem dos componentes autorregressivos (p), o número de operadores de diferenciação (d) e a ordem mais alta do termo médio móvel. Por exemplo, ARIMA (2,1,1) significa que você possui um modelo autoregressivo de segunda ordem com um componente de média móvel de primeira ordem, cuja série foi diferenciada uma vez para induzir a estacionaria. Escolhendo a Especificação Direita: O principal problema na caixa clássica da Caixa-Jenkins está tentando decidir qual a especificação ARIMA para usar - isto é. Quantos parâmetros AR e ou MA devem incluir. Isto é o que muito de Box-Jenkings 1976 foi dedicado ao processo de identificação. Dependia da avaliação gráfica e numérica da autocorrelação da amostra e das funções de autocorrelação parcial. Bem, para os seus modelos básicos, a tarefa não é muito difícil. Cada um tem funções de autocorrelação que se parecem de uma certa maneira. No entanto, quando você aumenta a complexidade, os padrões não são facilmente detectados. Para tornar as questões mais difíceis, seus dados representam apenas uma amostra do processo subjacente. Isso significa que erros de amostragem (outliers, erro de medição, etc.) podem distorcer o processo de identificação teórica. É por isso que a modelagem ARIMA tradicional é uma arte, em vez de uma ciência. Média de Mudança Integrada Sustentável - ARIMA DEFINIÇÃO da Média Mover Integrada Autoregressiva - ARIMA Um modelo de análise estatística que usa dados de séries temporais para prever as tendências futuras. É uma forma de análise de regressão que busca prever movimentos futuros ao longo da caminhada aparentemente aleatória realizada pelas ações e no mercado financeiro, examinando as diferenças entre valores na série em vez de usar os valores de dados reais. As lags das séries diferenciadas são referidas como auto - gressivas e os atrasos dentro dos dados previstos são referidos como média móvel. BREAKING DOWN Média de Mudança Integrada Autoregressiva - ARIMA Este tipo de modelo é geralmente referido como ARIMA (p, d, q), com os números inteiros referentes ao autorregressivo. Partes médias integradas e móveis do conjunto de dados, respectivamente. A modelagem ARIMA pode levar em consideração tendências, sazonalidade. Ciclos, erros e aspectos não estacionários de um conjunto de dados ao fazer previsões.

No comments:

Post a Comment